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Abstract. The characteristic algebra of genenlized Ermakov systems is sf(2,  W). The smchxe 
of these systems in three dimensions is obtained. A subset in the form of an equation of motion 
with the additional requirement of so@) symmetry is studied. It indudes the classical equation 
of the magnetic monopole. The existence of three vectors of Poincad type is established. 
Consideration is given to weak generalized Ermakov systems in which the symmetry breaking 
occurs in the radial equation. 

1. Introduction 

Since Ray and Reid (1979) revealed them to the Western literature, Ermakov systems and 
their generalizations have attracted wide attention. The Ermakov system (Ermakov 1880) 
is the combination of the equation for a time-dependent oscillator 

+ W * ( t ) q  = 0 (1.1) 

and an auxiliary equation, generally known as the Pinney equation (Pinney 1950), 

pZ+w*(t)p = p-3. (1.2) 

Elimination of &(t)  between (1.1) and (1.2), the introduction of an integrating factor, 
p q  - &, and integration produces the first integral 

I = fNP4  - + (q /P)21  (1.3) 

which is usually called the Lewis invariant after H Ralph Lewis who 'rediscovered' it in 
1966 (Lewis 1967, 1968) in an application of Kruskal's asymptotic method (Kruskal 1962). 

The generalized Ermakov system of Ray and Reid (1979) 
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where f and g are arbitrary functions of their arguments, has a first integral obtained in the 
same way as that for (1.1) and (1.2) which is 

K S Govinder et a1 

y b  
(1.6) 

The Ermakov invariant (1.6) persists if ~ ‘ ( t )  is replaced by mything (Ray 1980, Ray and 
Reid 1980, Goedert 1990, Leach 1991). 

Generalized Ermakov systems have been widely treated and we refer the reader to Leach 
(1991) for references. Our particular interest in this paper is the relationship between the 
structure of the differential equations of a three-dimensional generalized Ermakov system 
and its underlying Lie algebraic structure. In part this has been motivated by the observation 
of Leach (1991) that the nature of generalized Ermakov systems is explained in terms of 
the Lie symmetry algebra d ( 2 ,  R) and is more obvious if plane polar coordinates ( r ,  e) are 
used. Then (1,4), (1.5) and (1.6) become 

1 = ~ ( x y  I - Xy)’+ /” [ u f ( u )  - K 3 g ( u ) ]  du. 

The Ermakov-Lewis invariant (1.9) possesses the three Lie point symmetries 

G ]  = a/at  (1.10) 

cZ = ztajat  + r a p -  (1.11) 

G ,  = t za /a t  + trajar (1.12) 

with the Lie brackets 

[GI ,  Gz1= 2Gi [GI,  G31 = G2 [G2, G31 = 2 6  (1.13) 

which are the relations for the Lie algebra sl(2,R). The invariant (1.9) is obtained by 
integration of the angular equation (1.8) which also possesses sl(2, R) symmetry. With the 
representation (l.IO)<l.lZ) of sl(2,R) used here this is not the case for (1.7) unless the 
wZ(t)r  term (or anything else) is absent. However, we do note that the u2(r ) r  term can be 
accommodated by a different set of operators which are related to (l.IO)-(l.lZ) by means 
of a point transformation (Leach and Gorringe 1990). In Leach (1991) it was proposed that 
the expression generulizedErmkov system be  restricted to systems for which the equations 
of motion possessed sl(2, R) symmetry and that systems which had only the invariant be 
termed weak generalized Ermakov systems. 

The observations reported by Leach (1991) were based on a Lie algebraic analysis 
of (l.4), (1.5) and (1.6). It was natural to ask what systems possessed sl(2-R) 
symmetry. Govinder and Leach (1992) showed that the most general system of second-order 
ordinary differential equations in two dimensions invariant under the action of the sl(2, R) 
representation (l.lO)-(I.lZ) consisted of equations of the form 

~ ( ~ , r ~ d , r  r , r  e i 2 r 3 i e )  =o. (1.14) 3 . .  4,.  
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("be extension to higher dimensions requiresjust the addition of the arguments $I, r2$, r44+ 
2r3r$, . . . .) A subset of equations of the type (1.14) can be written in terms of the form of 
the Newtonian equation of motion of a particle as 

(1.15) 

(1.16) 

Equations (1.15) and (1.16) take a simpler form if we introduce new time 

T := r-'dt (1.17) s 
and the inverse radial distance x = r- ' .  They become 

(1.18) 

(1.19) 

where := (d/dT). There is a local solution of (1.19), 0 = B(T, So, e;), and, when this is 
substituted into (1.18) together with 9' = O'(T, 6, eh), (1.18) is reduced to to the equation 
for a two-parameter family of time-dependent harmonic oscillators, the family of general 
solutions of which will contain four parameters. Under suitable conditions on g(8,e') (1.19) 
can be integrated to give the first integral 

I = w e ,  e') (1.20) 

which is the generalization of the Ermakov-Lewis invariant (1.9). Again under suitable 
conditions (1.20) can be integrated to give a second first integral 

(1.21) 

where N ( 0 ,  I) is obtained by the inversion of (1.20). In general this will not be possible 
as M(6. e') will be only locally defined (for example on open neighbourhoods of analytic 
points of g in (8. e') space) and typically N ( 0 ,  [) will be infinitely branched. In the case 
that f and g in (1.18) and (1.19) are free of 8' we obtain from (1.19) the usual expression 
for the Ermakov-Lewis invariant 

I = $3" - g(6') dB (1.2)  s 
and (1.21) becomes 

I/' 
J = T - J de/( 2[, + g(s) ds] 1 (1.23) 

We note that, if we impose the additional requirement that equation (1.14) (and so (1.18) and 
(1.19)) be invariant under the action of the rotation group in two dimensions with generator 
8/36 so that the algebra is sl(2,  R) @ so(2), (1.19) is now 

eli = g(Oi). (1.24) 
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The Ermakov-Lewis invariant is given by 
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and an explicitly time-dependent integral is given by 

(1 2.5) 

(1.26) 

The integral (1.23) comes from the elimination of 0' between (1.25) and (1.26). 
In this paper we extend the consideration of systems of differential equations invariant 

under sl(2,R) to three dimensions. We have already noted that the generalization of 
(1.14) to higher dimensions is trivial. However, we find that the imposition of rotational 
invariance by making the invariance algebra d ( 2 ,  R) @ so(3) yields an interesting class of 
differential equations which includes the classical equation for the magnetic monopole. The 
invariance of this equation under the elements of the algebra sl(2, R) 63 so(3) has already 
been reported by Moreira et al (1985) (although they preferred to use the isomorphic 
algebra so(2, I )  Bso(3)). The monopole is also known to possess a conserved vector called 
Paincares vwtor (Paincar6 1896). We shall see that the general system to be discussed 
here possesses three such vectors and that the solution of the system of equations reduces 
to the determination of the three Paincar6 vectors and the solution of the radial equation 
corresponding to (1.18). We should point out that, in the case of the monopole, the vector 
usually referred to as Poincart's vector is obtained by elementary vectorial manipulation 
of the equation of motion. The derivation of the two other vectors which, because of their 
nature, we also term Paincar6 vectors is by no means transparent even in this simple case. 
We also consider weak generalized Errnakov systems in three dimensions. 

2. Equations invariant under sl(2, R) 63 so(3) 

In spherical polar coordinates ( x  = r sin 0 cos 4, y = r sin 0 sin 4, z = r cos 0) the equation 
corresponding to (1.14) invariant under the representation (l,lO)-(l.l2) of sI(2, R) is 

F(e,d,r28,r2$,r'i,r4B + 2 r 3 i 8 , r 4 $ + 2 r 3 i $ )  =o.  (2.1) 

To make reasonable sense as a system of second-order differential equations in three 
dependent variables we need a system of three equations of the forni 

(2.2) 

(2.3) 

r3? = f(6, 4, r28,  r2$) 

r'4 + z r 3 4  = h(e, 4-  r 2 '  e, r 2' d ) ,  
r48 + 2 r 9 e  = g(e, 4, r2e, r2d)  

(2.4) 

(One could conceive of variations on this. By way of example-not definitive nor intended 
to be exclusive-(2.4) could be replaced by 

H(e. #, r28, r2$, I )  = 0 (2.5) 

where I is a parameter which may be taken to be the value of a first integral. If I has a 
particular value, IO, in which case it could just as well be omitted from (2.5), we are in the 
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realm of configuration invariants. To keep the discussion concise we do not digress into 
this specialized area. The reader is referred to Sarlet et al (1985) for a discussion of the 
relationship between systems of second-order equations, first integrals and configurational 
invariants.) 

In terms of the new time T and inverse radial distance x equations (2.2H2.4) are 

In contrast to the pair of equations (1.18) and (1.19) for which (1.19) was 'in principle' 
integrable and so (1.18) reduced to the time-dependent oscillator, the situation with the 
system (2.6)<2.8) is much more complex. Given 6' and @ as functions of T ,  (2.6) is 
straightfarward enough as it  is linear in x. 

We confine our attention to systems for which, in addition to invariance under d(2, R) 
there is also rotational invariance, i.e. the system of equations is also invariant under the 
action of the generators of so(3), namely 

(2.9) 

(2.10) 

G6 =cos@ajae  -cotesinda/a@. (2.11) 

We add this constraint from considerations of possible physical applicatioos. The 
applications of (ala@) to (2.2)+.4) (alternatively (2.6H2.8). but the sequel suggests that 
the former should be used) is simple enough, f, g and h must be 6 free. As the second 
extension of Gs (req G6) mixes 8 and 4 terms, (2.3) and (2.4) must be treated as a coupled 
system whereas (2.2) can be treated by itself. The actual analysis involved makes for a 
pleasant and straightforward exercise. The action of GF' makes no difference to the result 
which is to be expected since G6 = [G4, G S ] .  (Given a symmetry G = rajat + qia/axi, 
the second extension is G(21 = G + (rji - xii )a/ai i  + ($; -Xi+ - i if)a/axi.)  We find 
that the most general system of the form (2.2)-(2.4) invariant under sL(2, R) fB so(3) is 

r3i: = A,(L)  (2.12) 

r48 +2r3 ib  = r4d2sinBcosB -t E(L)r2b - C(L)rZdsinO (2.13) 

(2.14) 1 
sin 6 

r 4 @ " t Z r 3 i $  = -2r48$cot8 t -[E(L)r*$ sine + C(L)r28] 

where A ! ,  E and C are arbitrary functions of their argument L,  where 

L~ :=r4 (BZ+$2s in2e )  (2.15) 

is the square of the magnitude of the angular momentum. The three equations (2.12)-(2.14) 
may be written in the compact vectorial form 

(2.16) 
1 

r3 
i: = -{A(L).F + E(L)O + C ( L ) L ]  
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where we have replaced Al(L) by A ( L )  + L2.  In an obvious notation F and e are the unit 
vectors in the direction-of the radius vector and the angular momentum vector L(:= r x T ) .  

The unit vector b := L x P is in the direction of the rate of change of P and is the natural 
generalization of s  ̂ in plane polar coordinates. 

In terms of the definition of generalized and weak generalized Ermakov systems (2.2)- 
(2.4) represents the three-dimensional form of the generalized Ermakov system. The addition 
of some extra term to (2.2) would be in the spirit of the meaning of weak generalized 
Ermakov system as given by Leach (1991). However, two points should be made, The 
first is that under suitable (for example analyticity) conditions (2.2)-(2.4) have integrals, 
i.e. constants of integration, defined over some local neighbourhood. The existence of one 
or more global first integrals for (2.3), (2.4) or a combination of (2.3) and (2.4) would 
require some constraints on the functions g and h.  The second is that we have chosen 
the radial equation to be the one which leads to the symmetry breaking. It made sense in 
two dimensions as we were guaranteed the 'in principle' existence of an Ermakov-Lewis 
invariant provided that the system maintained sl(2, R) symmetry in the radial equation. 
This is lost in the general three-dimensional case and further thought needs to he given to 
a correct terminology. 

To conclude this section we make some observations about (2.16). For B and C zero 
and A ( L )  a constant ( L  is conserved) we have the equation for a Newton-Cotes spiral 
(Whittaker 1944) which, in essence, is the free particle in the plane with an excess or deficit 
of angular momentum. For A and B zero and C ( L )  proportional to L (= hL)  a constant 
(L is again conserved) we have the classic equation of a particle moving in the field of a 
magnetic monopole. In this case it is well known that there exists the first integral 

K S Govinder et a1 

P = L + h F  (2.17) 

and the motion is on the surface of a cone of semi-vertex angle given by cos-'(CIPL) 
(PoincarC 1896). It is only more recently that Moreira et al (1985) demonstrated that the 
algebra was so(2, 1) fB so(3) (isomorphic to sl(2, R) fB so(3)). We note that the classical 
monopole is a Hamiltonian system and the components of the Poincarb vector possess the 
algebra so(3) under the operation of taking the Poisson bracket (Mladenov 1988). 

3. Poimar6 vector for (2.16) 

The combination of the existence of the Paincar6 vector (2.17) and the symmetry algebra 
sl(2,  a) fB so(3) for the classical monopole equation 

i: = ~ ( ~ ) 2 / r ~  (3.1) 

suggests that it may be fruitful to look for a similar vector for the general equation (2.16). 
Elementary manipulation of (3.1) produces (2.17) more or less without trying. This is not 
the case with (2.16). However, an equally simple-minded approach does yield interesting 
results. We assume the existence of a vector of Poincark type given by 

P := IF+ J G +  KL (3.2) 

where I, J and K are functions to be determined. Requiring that P he zero when (2.16) 
is satisfied leads to the system of equations 

(3.3) 
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which in terms of new time T are 

(3.4) 
\ K /  \ o -CJL o J \ K /  

Equations (3.4) have a geometrical interpretation. They are the Serret-Frenet formulae 
associated with a curve of curvature L and torsion C ( L ) J L ,  parametrized by T .  An 
orthonormal triad of solution vectors represents the principal triad of the curve, consisting 
of tangent, normal and binormal vectors. 

As an aside we note that this approach is not feasible for the two-dimensional system 
of equations since ;? and 6 are then multiples of 8 and each multiple is a property of the 
geometry of the plane and is independent of the mechanics. The only way to make progress 
would be to specify the i and 8 dependence in P .  This has not been necessary in the 
present case because the dynamics is introduced via 12. 

The scalar product of (2.16) with 6 is 

r - r ( 8 ’ + ~ ’ ~ i n ’ 8 ) = r - ~ A ( L )  (3.5) 

which in terms of x and T is 

x“+ ( L 2  + A ( L ) ] x  = 0. (3.6) 

The vector product of r with (2.16) gives 

= r-’(BZ - C G )  (3.7) 

so that 

L i  = r-’BL (3.8) 

or 

L’ = B ( L )  (3.9) 

which gives the fisst integral 

(3.10) 

This can be interpreted as an equation defining T in terms of L or L in terms of T. Naturally, 
if B is zero, the magnitude of the angular momentum is constant. 

By virtue of (3.10), (3.6) becomes the by now familiar time-dependent oscillator 
which characterizes the radial equation for generalized Ermakov systems expressed in the 
appropriate coordinates. 

In like fashion (3.4) is now a three-dimensional non-autonomous first-order system of 
differential equations. Its structure is suggestive of a time-dependent oscillator written as a 
system of first-order equations. However, the analogy only helps for a constant t. Before 
going into the details of the method of solution of (3.4) one comment is appropriate. As a 
thee-dimensional first-order linear system it has t h e e  linearly independent solutions. This 
means that there are in fact three ‘Poincark’ vectors. 
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In view of the geometric interpretation of equations (3.4) some natural examples to 
consider would be ones which have standard properties of curves. The simplest one is a 
curve of constant curvature which means that B is zero. The solution of (3.4) is 

L - COS S2T L .  - sin S2T 
C 

= [!]lo+ [ -:S2T ] J o + [  __ ; s Q T  cos S2T ] K O  s inRT 
(3.11) 

where Q' := L' + C z / L z  and the scaling has been chosen so that the norm of each vector 
is one. The standard magnetic monopole has C = AL and is associated with a curve of 
constant torsion. The usual Poincar.5 vector of the literature has 10 = S2, JO = 0 and KO = 0 
and is 

P = L+ 1.7: (3.12) 

but we emphasize that there are in fact three vectors. 
The solution (3.1 1) also applies in the case that-there is a constant ratio of torsion to 

curvature, i.e. C = AL'. There is a Poincark vector L t A? (regardless of A and B )  which 
is time-independent. Then the general solution of (3.4) is written using s 'L(r)ds.  

Since L is constant the solution of the radial equation (3.6) is simply 

~ ( T ) = E s i n o T +  F c o s w T  (3.13) 

where wz := L' + A(L) and E and F are constants of integration. (We consider only w 
real and non-zero. The other two possibilities can he treated in a similar fashion.) From 
(3.13) and the definition of T we have 

t = /  dT 
( E  sinwT + F C O S W T ) ~  

(3.14) 

which is easily evaluated and inverted to give T in terms of r and, through (3.13), we have 

(3.15) 

With the general solution of (3.2) inverted to give 6, multiplication by r gives ~ ( t )  with six 
constants of integration and hence the general solution. This solution applies to all problems 
associated with constant curvature. 

We would expect to find three conserved vectors as the form posited for P spans the 
space (except for exceptional points where degeneracy occurs). One is reminded of the work 
of Fradkin (1965, 1967) and Yoshida (1987, 1989) on the existence of Laplace-RungeLenz 
vectors for central force and other three-dimensional problems. 

The procedure described in detail above for the constant curvature case applies mutatis 
mutandis for the general equation (2.16). Usually the equations become non-autonomous 
with a consequent increase in the degree of difficulty of solution. This is particularly the 
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case with (3.4) which in the autonomous case is solved by a straightforward exponentiation 
of the coefficient matrix by time. Nevertheless the general equation can be treated. 

By construction P is a constant vector and I ,  f and K are not independent when the 
magnitude of P is specified. (In the case of the single vector there is not much point to it, 
but, when there are three vectors spanning the space, there is no small appeal in specifying 
unit vectors.) Only two dependent variables are needed and we introduce the transformation 
(the so-called Weierstrass transformation of Forsyth (1904); see also Kamke (1971)). 

I + i J  7 = -- I +i f  t = -  
1 - K  1 f K  

(3.16) 

Together with the normalization of P ,  (3.16) leads to a common differential equation for t 
and 7 which is of Riccati form, namely 

iL 
w ' + i ~ w +  -(I - wz) = o  

2C 
(3.17) 

where w stands for 5 and q in turn. The transformation 

w = 2iCy'fLy 

yields the linear second-order equation 

LZ 
+iL  y'+-y=O 

C' L' ) 4cz 

which is trivially related via 

I /z 
Y = (4 )  ue-~12 J L d T  

(3.18) 

(3.19) 

(3.20) 

to the standard time-dependent harmonic oscillator (TDHO ) 

Given the solution for U, 5 and 7 follow through (3.18) and (3.20). The components of P 
are given by 

(3.22) 

Needless to remark the tricky business is always the solution of the TDHO equation (3.21). 
We illustrate this with what appears to be a fairly innocuous set of functions B and C being 
proportional to L, i.e. 

B = a L  C = B L .  (3.23) 

Then 

L = Loe"' (3.24) 
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and (3.21) becomes 

K S Govinder et a1 

(3.25) 

which is Whittaker's differential equation in slightly disguised form. With the solution to 
(3.25) the route back to ( and q via (3.18) and (3.20) is straightforward. To keep things 
simple we take A(L) to be zero. The solution of the radial equation (3.6) is 

2 k r  
U" - $[Lee + 2iru~oe"' - P - ~ I U  = o 

,y = EJo(Loear) + FYo(LoemT) (3.26) 

where JO and YO are Bessel's functions and, as before, E and F are constants. However, 
the determination o f t  is via 

(3.27) 

for which a closed expression is not known 

4. Some 'weak' considerations 

Leach (1991) proposed that systems with Ermakov invariants which did not possess d ( 2 .  W) 
symmetry should be termed 'weak'. Athorne (1991), although not disagreeing with the 
distinction, noted that other classifications-such as Hamiltonian and non-Hamiltonian- 
were also important. Indeed, the point of that letter was that those (non-Hamiltonian) 
systems described, and which had only one global invariant, could be understood as 'linear 
extensions' of an underlying Hamiltonian system with appropriate choice of time variable. 
Here we wish to consider a few examples of systems for which only the angular equations 
possess sL(2, R) symmetry. We maintain so(3) symmetry overall so that the radial equation 
has the form 

L2 1 
r r3 ? - y = - A ( L )  + f(r .  L )  (4.1) 

where f ( r ,  L) is the symmetry-breaking term. The analysis of the angular equations is the 
same which means that, in principle, we have L = L ( T )  and the three Poincard vectors. In 
terms of the inverse radial variable x and new time (4.1) is 

When f is zero, (4.2), as the equation for the TDHO, is transformed to autonomous form by 
the transformation 

r = 1 p(T)-'dT (4.3) 
X J = -  
P 

where p is a solution of the Pinney equation (Pinney 1950) 
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and L = L ( T )  through (3.10). One could hope that for some functions f that the 
transformation (4.3) would render it autonomous. For this to happen it is necessary for 
p = g ( L )  and the argument of f to be x - ' g ( L ) ,  where g is a solution to a Pinney-type 
equation with L as independent variable containing A ( L )  and B ( L ) .  

Such constraints are not required in a few cases. If the additional force is due to a 
Newton-Cotes potential, (4.2) is as if f were zero and A ( L )  changed. For a Kepler-type 
potential 

so that (4.3) is just the non-homogeneous time-dependent oscillator and is solved in standard 
fashion. For an oscillator type potential 

which makes (4.2) a Pinney equation with time-dependent coefficients. If p is independent 
of L or B = 0, this can be treated as if it were the standard TDHO problem. If such is not 
the case, the best that one can do is to introduce a time-dependent transformation which 
converts (4.2) to a generalized Emden-Fowler equation of order -3. 

5. Conclusion 

In the case that (2.16) has a Hamiltonian representation the Paincar6 vectors will have the 
Lie algebra so(4) under the operation of taking the Poisson Bbracket. The question is under 
what circumstances does it have a Hamiltonian? (One would not expect the usual Poisson 
bracket relation [z,, Zv]pB = J,.. (zi = 9i, zn+, = pi and J is the 2n x2n symplectic matrix) 
but more the monopole type of relation, i.e. seek H : g = [9, H]pB and p = [ p ,  H]PB lead 
to the equation of motion.) There are two cases of (2.16) to consider: (i) when (2.16) is 
itself Hamiltonian; and (ii) when (2.16) possesses aglobal invariant which is not, however, 
a Hamiltonian function for the system. In the latter case the possibility asrises that this 
invariant is a Hamiltonian function for a subsystem on an appropriate phase space, as in 
Athorne (1991). 
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